159
Magneto-Priming: A Novel Technique Towards Improved Seed Germinability
Alemán, E. I., Mbogholi, A., Boix, Y. F., González-Olmedo, J., & Chalfun-Junior, A., (2014).
Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.)
obtained by in-vitro propagation. Pol. J. Environ. Stud., 23(1), 95–101.
Alexander, M., & Ganeshan, S., (1990). Electromagnetic field induced in-vitro pollen
germination and tube growth. Curr. Sci., 59(5), 276–277.
Alvarez, J., Martinez, E., Carbonell, V., & Florez, M., (2020). Effects of polyethylene glycol
and sodium chloride stress on water absorption of magneto-primed triticale seeds. Rom.
Rep. Phys., 72, 708.
Alvarez, J., Martinez, E., Florez, M., & Carbonell, V., (2021). Germination performance and
hydro-time model for magneto-primed and osmotic-stressed triticale seeds. Rom. J. Phys.,
66, 801.
Anand, A., Kumari, A., Thakur, M., & Koul, A., (2019). Hydrogen peroxide signaling
integrates with phytohormones during the germination of magnetoprimed tomato seeds.
Sci. Rep., 9(1), 1–11.
Anand, A., Nagarajan, S., Verma, A., Joshi, D., Pathak, P., & Bhardwaj, J., (2012). Pre
treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of
maize (Zea mays L.). Indian J. Biochem. Biophys., 49(1), 63–70.
Athari, N. M., Noori, M., & Ghanati, F., (2008). Effect of static magnetic field on certain
physiological and biochemical features of Cicer arietinum in vegetative growth phase.
Pajouhesh-Va-Sazandegi., 21(3), 62–68.
Azimi, N., Majd, A., Nejadsattari, T., Ghanati, F., & Arbabian, S., (2018). Effects of
magnetically treated water on physiological characteristics of Lens culinaris L. Iran. J. Sci.
Technol. Trans. A Sci., 42(2), 331–337.
Baghel, L., Kataria, S., & Guruprasad, K. N., (2016). Static magnetic field treatment of
seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bio
ELectromagn., 37(7), 455–470.
Baghel, L., Kataria, S., & Guruprasad, K., (2018). Effect of static magnetic field pretreatment
on growth, photosynthetic performance and yield of soybean under water stress.
Photosynthetica., 56(2), 718–730.
Baghel, L., Kataria, S., & Jain, M., (2019). Mitigation of adverse effects of salt stress on
germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through
magnetopriming. Acta Agrobot., 72(1).
Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F., (2008). From intracellular signaling
networks to cell death: The dual role of reactive oxygen species in seed physiology.
Comptes. Rendus. Biol., 331(10), 806–814.
Balcavage, W., Alvager, T., Swez, J., Goff, C., Fox, M., Abdullyava, S., & King, M., (1996).
A mechanism for action of extremely low frequency electromagnetic fields on biological
systems. Biochem. Biophys. Res. Commun., 222(2), 374–378.
Baum, J. W., & Nauman, C. H., (1984). Influence of strong magnetic fields on genetic
endpoints in tradescantia tetrads and stamen hairs. Environ. Mutagen., 6(1), 49–58.
Belov, K., & Bochkarev, N., (1983). Magnetism on Earth and in Space. Izdatel’stvo Nauka:
Moscow.
Belyavskaya, N., (2001). Ultrastructure and calcium balance in meristem cells of pea roots
exposed to extremely low magnetic fields. Adv. Space Res., 28(4), 645–650.
Belyavskaya, N., (2004). Biological effects due to weak magnetic field on plants. Adv. Space
Res., 34(7), 1566–1574.