159

Magneto-Priming: A Novel Technique Towards Improved Seed Germinability

Alemán, E. I., Mbogholi, A., Boix, Y. F., González-Olmedo, J., & Chalfun-Junior, A., (2014).

Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.)

obtained by in-vitro propagation. Pol. J. Environ. Stud., 23(1), 95–101.

Alexander, M., & Ganeshan, S., (1990). Electromagnetic field induced in-vitro pollen

germination and tube growth. Curr. Sci., 59(5), 276–277.

Alvarez, J., Martinez, E., Carbonell, V., & Florez, M., (2020). Effects of polyethylene glycol

and sodium chloride stress on water absorption of magneto-primed triticale seeds. Rom.

Rep. Phys., 72, 708.

Alvarez, J., Martinez, E., Florez, M., & Carbonell, V., (2021). Germination performance and

hydro-time model for magneto-primed and osmotic-stressed triticale seeds. Rom. J. Phys.,

66, 801.

Anand, A., Kumari, A., Thakur, M., & Koul, A., (2019). Hydrogen peroxide signaling

integrates with phytohormones during the germination of magnetoprimed tomato seeds.

Sci. Rep., 9(1), 1–11.

Anand, A., Nagarajan, S., Verma, A., Joshi, D., Pathak, P., & Bhardwaj, J., (2012). Pre­

treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of

maize (Zea mays L.). Indian J. Biochem. Biophys., 49(1), 63–70.

Athari, N. M., Noori, M., & Ghanati, F., (2008). Effect of static magnetic field on certain

physiological and biochemical features of Cicer arietinum in vegetative growth phase.

Pajouhesh-Va-Sazandegi., 21(3), 62–68.

Azimi, N., Majd, A., Nejadsattari, T., Ghanati, F., & Arbabian, S., (2018). Effects of

magnetically treated water on physiological characteristics of Lens culinaris L. Iran. J. Sci.

Technol. Trans. A Sci., 42(2), 331–337.

Baghel, L., Kataria, S., & Guruprasad, K. N., (2016). Static magnetic field treatment of

seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bio

ELectromagn., 37(7), 455–470.

Baghel, L., Kataria, S., & Guruprasad, K., (2018). Effect of static magnetic field pretreatment

on growth, photosynthetic performance and yield of soybean under water stress.

Photosynthetica., 56(2), 718–730.

Baghel, L., Kataria, S., & Jain, M., (2019). Mitigation of adverse effects of salt stress on

germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through

magnetopriming. Acta Agrobot., 72(1).

Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F., (2008). From intracellular signaling

networks to cell death: The dual role of reactive oxygen species in seed physiology.

Comptes. Rendus. Biol., 331(10), 806–814.

Balcavage, W., Alvager, T., Swez, J., Goff, C., Fox, M., Abdullyava, S., & King, M., (1996).

A mechanism for action of extremely low frequency electromagnetic fields on biological

systems. Biochem. Biophys. Res. Commun., 222(2), 374–378.

Baum, J. W., & Nauman, C. H., (1984). Influence of strong magnetic fields on genetic

endpoints in tradescantia tetrads and stamen hairs. Environ. Mutagen., 6(1), 49–58.

Belov, K., & Bochkarev, N., (1983). Magnetism on Earth and in Space. Izdatel’stvo Nauka:

Moscow.

Belyavskaya, N., (2001). Ultrastructure and calcium balance in meristem cells of pea roots

exposed to extremely low magnetic fields. Adv. Space Res., 28(4), 645–650.

Belyavskaya, N., (2004). Biological effects due to weak magnetic field on plants. Adv. Space

Res., 34(7), 1566–1574.